

The Burden of Obesity-Related Cardiovascular Disease (CVD)

Obesity is a rising health problem in the US¹

According to the Centers for Disease Control and Prevention, obesity is a common, serious, and chronic disease. It is multifactorial and progressive in nature. It is classified as a body mass index (BMI) of \geq 30.0 kg/m² in adults.¹⁻⁴

~2 out of 5 adults (42%) struggle with obesity in the US, according to the 2017-March 2020 National Health and Nutrition Examination Survey (NHANES)⁵

The US obesity prevalence is **projected to increase to nearly 50% in adults by 2030** per an analysis published in 2019 using data from the BRFSS survey* and NHANES^{6,†}

*Data from 1993-1994 and 1999-2016.6 †Data from 1991-1994 and 1999-2016.6

Obesity is a risk factor for CVD and is associated with poor outcomes^{3,7}

Obesity is an independent risk factor for CVD, in part due to its pathogenesis, which increases inflammation and contributes to progression of atherosclerosis.^{3,7,8}

Obesity also contributes directly to certain risk factors for the development of CVD^{3,7}:

Dyslipidemia

Type 2 Diabetes

Hypertension

A population-based study evaluating the lifetime risk estimates of incident CVD by weight status using pooled data of 190,672 in-person examinations found that **adults with obesity have a higher cumulative lifetime risk of incident CVD events and CVD death** compared with adults with a normal BMI.^{9,‡}

Increased lifetime risk for first CVD event in middle-aged male and female patients with obesity, respectively, compared with patients with a normal $BMI^{9,5,\parallel}$

Increased lifetime risk of incident CHF in middle-aged adults with obesity compared to those with a normal BMI^{9,II}

^tPooled data of adult patients aged 20-79 years old free of clinical CVD at baseline from 10 large US prospective cohort studies conducted over 1964-2015; middle-aged included adults with index age 40-59 years. Obesity was defined as BMI 30.0-39.9 kg/m², and normal BMI defined as 18.5-24.9 kg/m².⁹ [§]CVD events included fatal and nonfatal myocardial infarction, fatal and nonfatal stroke, CHF, and cardiovascular death.⁹ ^{IB}Based on competing hazard ratios adjusted for age, race/ethnicity, and smoking status.⁹

According to a meta-analysis of 5 randomized studies consisting of 881,692 participants that assessed the extent of association between obesity and CVD, **obesity was significantly associated with an increased odds of coronary artery disease** (OR, 1.20; 95% CI, 1.02-1.41; *P*=0.03; I²=87%).^{10,¶}

 1^2 is a value used to assess heterogeneity across studies (1^2 of 25%-50% indicating mild heterogeneity, 50%-75% indicating moderate heterogeneity, and >75% indicating severe heterogeneity).¹⁰

Weight Loss Can Help Improve Certain CVD Risk Factors and Reduce Medical Costs Associated With Obesity¹¹⁻¹³

The high expenditure associated with obesityrelated CVD results in substantial economic burden13,14

~\$6650 is spent in direct costs for medical treatment per case of stroke attributable to obesity[†]

is spent in direct costs for medical treatment per case of CHF or CHD attributable to obesity[†]

^cDirect medical costs of CHF, CHD, hypertension, and stroke attributable to obesity were reported in \$US 2018 and adjusted for inflation in 2023.¹³ ^tCosts were reported in \$US 2018 and were adjusted for inflation in 2023.¹

Weight loss can help reduce medical costs and improve certain CVD risk factors^{3,11,12}

One retrospective study examining data from 401 adults from 2003-2011 who enrolled in a weight-loss program discovered that patients considered high risk (those whose baseline risk factor screening values were outside the recommended limits) who lost >10% of their body weight, experienced greater reductions in fasting glucose, triglycerides, total cholesterol, and LDL cholesterol compared with high-risk patients who lost <10% of their body weight.11,§

⁸The weight-loss program was a 15-week program in which the patient's diet consisted of nutritional bars and shakes with 1 structured food-based meal per day, which transitioned to a food-based 1200 kcal/day diet after the first 8 weeks. Weekly physical activity goals were individualized, but patients were encouraged to achieve 150 min/week of moderate to vigorous physical activity. Patients also received weekly one-on-one visits with a registered dietitian, exercise physiologist, or psychology staff.¹¹

Predicted Annual Obesity-Related Medical Cost Savings for Adult Patients Without Type 2 Diabetes With Baseline BMI 30 kg/m² and 40 kg/m² ^{12,14,II}

	BMI 30 kg/m²	BMI 40 kg/m²	BACKGROUND
5% reduction in BMI	\$353.25	\$875.01	This study, which used data from the 2000-2010 waves of
10% reduction in BMI	\$674.14	· \$1040.20	the Medical Expenditure Panel Survey (MEPS), estimated a 5% reduction in BMI could lead to annual cost savings of \$353.25 for adult patients without type 2 diabetes with a baseline BMI of 30 kg/m ^{2.12,14,§}
15% reduction in BMI	\$965.55	; ¢7275 C1	
20% reduction in BMI	\$1230.13	:	

Aggregated medical costs include inpatient, outpatient, prescription drugs, dental, vision, home healthcare services, and medical equipment, which were reported in \$US 2010 and were adjusted for inflation in 2023.¹²

The link between cardiovascular disease risk factors and obesity supports the use of an evidence-based comprehensive weight management program in patients with overweight or obesity. ^{3,15}

CHD, coronary heart disease; LDL, low-density lipoprotein; MEPS, Medical Expenditure Panel Surveys.

CHD, coronary heart disease; LDL, low-density lipoprotein; MEPS, Medical Expenditure Panel Surveys. **References: 1.** Centers for Disease Control and Prevention. About overweight & obesity. Accessed February 23, 2023. https://www.cdc.gov/obesity/about-obesity/index.html **2.** Centers for Disease Control and Prevention. Defining adult overweight & obesity. Accessed February 23, 2023. https://www.cdc.gov/obesity/basics/adult-defining.html **3.** Powell-Wiley TM, Poirier P, Burke LE, et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. *Circulation.* 2021;143(21):e984-e1010. doi:10.1161/CIR.000000000000973. A Bray GA, Kim KK, Wilding JPH, World Obesity Federation. Obesity: a chronic relapsing progressive disease. A position statement of the World Obesity Federation. *Obes Rev.* 2017;18(7):715-723. **5.** Stierman B, Afful J, Carroll M, et al. National Health and Nutrition Examination Survey 2017-March 2020 prepandemic data files development of files and prevalence estimates for selected health outcomes. National Health Statistics Reports No. 158. June 14, 2021. Accessed February 23, 2023. https://stacks.cdc.gov/iewic/dc/106273 **6.** Ward ZJ, Bleich SN, Cradock AL, et al. Projected U.S. state-level prevalence of adult obesity and severe obesity. *N Engl J Med.* 2019;381(25):2440-2450. doi:10.1056/NEJMsa1909301 **7.** Cercato C, Fonseca FA. Cardiovascular risk and obesity. *Diabetol Metab Syndr.* 2019;11:74. doi:10.1186/s13098-019-0468-0 **8.** Cooke JP. Endotheliopathy of obesity. *Circulation.* 2020;142(4):380-383. doi:10.1161/CIRCULATIONAHA.120.047574 **9.** Khan SS, Ning H, Wilkins JT, et al. Association of body mass index with lifetime risk of cardiovascular outcomes: a systematic review and meta-analysis of mendelian randomization studies. *JAMA Netw Open.* 2018;1(7):e183788. doi:10.1001/jamanetworkopen.2018;3739:**31**2. Calley J, Meyerhoefer C, Beiner A, et al. Savings in medical expenditures associated with losses limited to 5-10. *Transl Behav Med.* 2016;6(3):3

